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We study ultrasonic waves in complex (strongly scattering) media.

Ordered media (phononic crystals):
- ultrasound tunneling
- focusing effects

Random media: 
-  ballistic and diffusive wave transport
-  new ultrasound scattering techniques (DSS & DAWS)

For more info and papers, see  www.physics.umanitoba.ca/~jhpage



Outline:   Phononic Crystals

Motivation:  Why study phononic crystals? (acoustic and elastic analogues
of photonic crystals):

Possible applications
- lenses and filters?
- sound insulation?

Conclusions

Wave phenomena in 3D phononic crystals 
(experiments and theory) : 
- our crystals and the experimental setup
- spectral gaps 
- ultrasound tunneling
- near field imaging
- focusing effects
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PHONONIC CRYSTALS
e.g. ordered arrays of mm-sized beads in a liquid or solid matrix �
acoustic and elastic analogues of photonic crystals.

Why study phononic crystals?
• richer physics?

•scattering contrast  �                   �  may be easier to achieve
complete spectral gaps
•longitudinal + transverse modes  �  novel wave phenomena?

• ultrasonic techniques have some advantages
•measure the field not the intensity
•pulsed techniques are easy

• good theory is available - e.g. Multiple Scattering Theory for elastic and
acoustic waves.   [Kafesaki and Economou, PRB 60, 11993 (1999);  Liu et al. PRB 62,
2446 (2000); Psarobas et al., Phys. Rev. B 62, 278 (2000)]

• relatively few experiments have been performed on 3D systems (unlike
2D).
•new applications?

�� �v,



Questions:

• Can complete spectral gaps be readily achieved?

• How do waves travel through phononic band gaps?
  No propagating mode � Tunneling?

    How long does it take?

• Can phononic crystals be used to focus ultrasound?



Our 3D Phononic Crystals:

Close-packed periodic arrays of
spherical beads surrounded by a liquid
or solid matrix:

• hcp arrays of stainless steel balls in
water

• fcc arrays of tungsten carbide balls in
water

• fcc arrays of tungsten carbide beads
in epoxy

For all these crystals:

• very high contrast scatterers          Zball/Zmatrix � 30 to 60

• very monodisperse spheres:      diameter d = 0.800 � 0.0006 mm

• very high quality crystals:       produced by a manual assembly technique
using a hexagonal template.



for hcp:   ABAB… layer sequence.  (slabs with c-axis � layers)

for fcc:   ABCABC… layer sequence.    ( [111]-axis � layers)

Schematic graph shows how the beads are packed in a FCC crystal along the [111] direction.
Beads A are on the bottom layer, B the second and C the third. The sequence is ABCABC...
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Matrix:

water

Lv = 1.49 km/s

�  = 1.0 kg/m3

Scatterers:
0.800-mm-diameter
tungsten carbide beads  

Lv
Tv

= 6.65 km/s
= 3.23 km/s

�  = 13.8 kg/m3

Material parameters for
our phononic crystals
made from tungsten
carbide beads in water



Sample

Sample
Holder

Ultrasound Generating
Transducer

Ultrasound Detecting
Transducer

Close-up of sample

y1

y2
L

phase velocity:
vp(�) = � L/(� + 2�n)
(� = phase delay)

group velocity:
   vg(�) = L/tpeak

(tpeak = peak delay time)

transmission
coefficient:
 Atrans(�) / Aref
(FFT ratio)

Experimental setup

Planar input pulse
(far field; large y1)

Compare transmitted
pulses with reference
pulses to measure:



Multiple Scattering Theory
Multiple scattering theory (MST) for acoustic and elastic waves -- ideally suited
to spherical scatterers.   (cf.  KKR theory)   [Liu et al. PRB 62, 2446 (2000) ]

Band-structure: calculate elastic Mie scattering of waves from all the scatterers in
the crystal, and solve the resulting secular equation for the eigenfrequencies.

Transmission:
calculate the
transmission through
a multi-layer sample
with thickness L
using a layer MST.
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hcp bandstructure:  stainless steel spheres in water
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Very small complete gap
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Fcc bandstructure:  tunsgsten carbide beads in water
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Fcc bandstructure and transmission:  tunsgsten carbide beads in epoxy

An even bigger
complete gap!
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TRANSMISSION COEFFICIENT

centre 90 %� �� �
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FCC tungsten carbide beads in water:
Input and transmitted pulses near the lowest band gap, k   [111]�
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FCC tungsten carbide beads in water:
Fourier Spectrum of these input and transmitted pulses near the

lowest band gap
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Use these data to
compute the
dispersion curve,
� versus k = � /vp,
and compare with
the bandstructure
calculation…
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Fcc bandstructure:  tunsgsten carbide beads in water
The black symbols show experimental data from phase velocity measurements
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Measuring the group velocity:  Digitally filtered input and
transmitted pulses (bandwidth 0.05 MHz) for a 12-layer phononic crystal
in the middle of the gap, compared with the pulse transmitted through the
same thickness of water.



Frequency dependence of the group velocity for a 5-layer sample.
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1D Theory

vwater = 1.49

Group Velocity
 Theory
 Data

vbead = 6.655
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Group Velocity versus sample thickness in the middle of the gap

The group velocity increases linearly with thickness!  �  tunneling.
Yang et al., Phys. Rev. Lett. 88, 104301 (2002)



Effect of absorption   -   the two-modes model
Simple physical picture:

Absorption cuts off the long scattering paths   �  destructive interference is
incomplete.

Effectively, absorption introduces a small additional component having a real
wave vector inside the gap.

Two-modes model:    (Dominant) Tunneling mode   (constant tunneling time)
                                             +      Propagation mode     (constant velocity)

�  Group velocity becomes
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where       L is the thickness,      a is the coupling coefficient,  ta   and   la   are the
tunneling time and tunneling length,  vb is the group velocity of the propagating
mode and  lb    is its decay length.
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The effect of absorption:  Fits of the two-modes model to 1 D theory and to
our data for 3 D phononic crystals (dashed curves).
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Add:  the phase velocity in the middle of the gap for the same sample thicknesses.  
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Electron tunneling through a barrier
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Barrier: Both phase and group velocities increase with L.

Band gap: Group velocity increases while the phase velocity is constant.
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Magnitude of the tunneling time:      ttunnel ~ 1 / ��gap

Tunneling Time

(also true for light
and electrons!)



Question:  Is ultrasound tunneling dispersionless?

Some general points about pulse propagation in dispersive media:
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Expand the wave vector k(�) in a Taylor series about the central frequency�o:

group velocity dispersion (GVD)
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inverse group velocity
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Pulse at (x,t) becomes

attenuation

carrier frequency oscillations
travel at vp = �o/ko

peak travels at the group velocity
of the central frequency

GVD changes the width symmetrically

convolution

Good approximation, so long as the pulse bandwidth is sufficiently narrow that:
• higher order terms in k(�) expansion are negligible
• frequency dependence of le is not important.
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Frequency dependence of the wave vector, the inverse group velocity and the group
velocity dispersion near the band gap in a 5 layer tungsten carbide/water crystal.

[c.f. measurements near the band edge in photonic crystals by Imhof et al. PRL 83, 2942 (1999)]
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Pulse broadening (a) just above the band gap, (b) in the middle of the gap and
(c) just below the band gap (bandwidth 0.02 MHz). � Very weak dispersion
in the gap, despite very strong scattering and a large variation in vp with �.




